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ABSTRACT
Wireless cognitive radio (CR) is a newly emerging paradigm
that attempts to opportunistically transmit in licensed fre-
quencies, without affecting the pre-assigned users of these
bands. To enable this functionality, such a radio must pre-
dict its operational parameters, such as transmit power and
spectrum. These tasks, collectively called spectrum manage-
ment, is difficult to achieve in a dynamic distributed environ-
ment, in which CR users may only take local decisions, and
react to the environmental changes. In this paper, we intro-
duce a multi-agent reinforcement learning approach based
spectrum management. Our approach uses value functions
to evaluate the desirability of choosing different transmis-
sion parameters, and enables efficient assignment of spec-
trums and transmit powers by maximizing long-term re-
ward. We then investigate various real-world scenarios, and
compare the communication performance using different sets
of learning parameters. We also apply Kanerva-based func-
tion approximation to improve our approach’s ability to han-
dle large cognitive radio networks and evaluate its effect on
communication performance. We conclude that our rein-
forcement learning based spectrum management can signif-
icantly reduce the interference to the licensed users, while
maintaining a high probability of successful transmissions in
a cognitive radio ad hoc network.
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1. INTRODUCTION
Wireless spectrum is a costly resource which is licensed

by governmental agencies to operators for long periods of
use, often spanning several decades. However, a large por-
tion of the assigned spectrum is used sporadically leading
to under-utilization of valuable frequency resources. To ad-
dress this critical problem, Federal Communications Com-
mission (FCC) has recently approved the use of unlicensed
devices in licensed bands [6]. Consequently, dynamic spec-
trum access techniques are proposed to solve these current
spectrum inefficiency problems [3, 8, 12]. This new area of
research foresees the development of cognitive radio (CR)
networks to further improve spectrum efficiency.

The basic idea of CR networks is that the unlicensed de-
vices (also called cognitive radio users) need to vacate the
band once the licensed devices (also known as primary users)
are detected. CR networks, however, impose a great chal-
lenge due to the high fluctuation in the available spectrum as
well as diverse quality-of-service (QoS) requirements. Specif-
ically in cognitive radio ad-hoc networks, the distributed
multi-hop architecture, the dynamic network topology, and
the time and location varying spectrum availability are some
of the key distinguishing factors. As the CR network must
appropriately choose its transmission parameters based on
limited environmental information, it must be able to learn
from its experience, and adapt its functioning. The challenge
necessitates novel design techniques that simultaneously in-
tegrate theoretical research on reinforcement learning and
multi-agent interaction with systems level network design.

Reinforcement learning [17] is a learning paradigm, which
was inspired by psychological learning theory from biology
[18]. Within an environment, a learning agent attempts
to perform optimal actions to maximize long-term rewards
achieved by interacting with the environment. The long-
term reward is the expected accumulated reward that the
agent expects to receive in the future under the policy, which
can be specified by a value function. The value function is
often a look-up table that directly stores values of states.
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Figure 1: The CR ad hoc architecture

The study of multi-agent systems [20] allows us to build
complex systems composed of multiple interacting intelligent
agents. Each agent in the system can sense the environment
and achieve its own local knowledge and experience. The
agent can then take select behaviors based on local infor-
mation and attempt to maximize the global performance of
the system. A typical multi-agent system is decentralized,
without a designated controlling agent.

A challenge that CR networks face is that the performance
of CR networks decreases sharply as the size of network in-
creases. Cognitive radio ad-hoc networks typically have a
very large number of unlicensed and licensed users, and the
range of possible transmission parameters is wide. There is
therefore a need for algorithms to apply function approx-
imation techniques to scale up reinforcement learning for
large-scale CR problems.

Function approximation [16] is a generalization technique
which has been widely used to solve large-scale learning
problems with huge state and action spaces [9, 7, 14]. In
general, function approximation uses examples of the desired
value function to reconstruct an approximation of this func-
tion and compute an estimate of the desired value from the
approximation function. Within the context of reinforce-
ment learning, instead of using a look-up table, function
approximation generalizes the function values of the states
that have not been previously visited from known function
values of its neighboring states.

In this paper, we focus on CR ad hoc networks with de-
centralized control [1] [2]. The architecture of a CR ad hoc
network, shown in Figure 1, can be partitioned into two
groupsof users: the primary network and the CR network
components. The primary network is composed of primary
users (PUs) that have a license to operate in a certain spec-
trum band. The CR network is composed of cognitive radio
users (CR users) that share wireless channels with licensed
users that already have an assigned spectrum.

Under this architecture, the CR users need to continuously
monitor spectrum for the presence of the primary users and
reconfigure the radio front-end according to the demands
and requirements of the higher layers. This capability can
be realized, as shown in Figure 2, by the cognitive cycle com-
posed of the following spectrum functions: (1) determining

Spectrum
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Transmitted
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PU Detection
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Spectrum Hole

Decision Request

Spectrum
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Figure 2: The cognitive radio cycle for the CR ad
hoc architecture

the portions of the spectrum currently available (Spectrum
sensing), (2) selecting the best available channel (Spectrum
decision), (3) coordinating access to this channel with other
users (Spectrum sharing), and (4) effectively vacating the
channel when a licensed user is detected (Spectrum mobil-
ity).

By leveraging reinforcement learning, the tasks of spec-
trum sensing and sharing could be undertaken effectively,
wherein specific interferer transmission patterns may be dis-
tinguished from each other. Similarly, by considering each
CR user as an agent and exploiting multi-agent interaction
algorithms, the network can converge to the fair sharing of
the spectrum and fast recovery if the spectrum is reclaimed
by the PU.

This paper is organized as follows. In Section 2, we formu-
late the cognitive radio problem. In Section 3, we describe
our reinforcement learning-based cognitive radio. The ex-
perimental results of our simulation are given in Section 4.
In Section 5, we discuss a Kanerva-based function approxi-
mation technique for our reinforcement learning based cogni-
tive radio. The effect of function approximation is evaluated
in Section 5.1. We conclude the paper in Section 6.

2. PROBLEM FORMULATION
In this paper, we assume that our network consists of a

collection of PUs and CR users, each of which is paired with
another user to form transmitter-receiver pairs. We also as-
sume perfect sensing that allows each CR user to correctly
infer the presence of the PU if the former lies within the PU’s
transmission range. Each CR user must now undertake deci-
sions about spectrum and transmission power independently
of the others users in the neighborhood.

A choice of spectrum by CR user i is essentially the choice
of the frequency represented by f i ∈ F , the set of available
frequencies. The CR users continuously monitor the spec-
trum that they choose in each time slot. The channels cho-
sen are discrete, and a jump from any channel to another is
possible in consecutive time slots.

The transmit power chosen by the CR user i is given by
P i

tx. The transmission range and interference range are re-
spectively represented by Rt and Ri. Our simulator uses
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the free-space path loss equation to calculate the attenuated
power incident at the receiver, denoted P j

rx. Thus,

P j
rx = αc · P i

tx

n
Di

o−β

,

where the path loss exponent β = 2. The constant

αc =
c2

(4πfc)2
,

where the the speed of light c = 3 × 108m/s, and fc is the
frequency at which the transmission occurs. The transmit
power values are real numbers in a pre-decided range, and a
jump from any given value to another is possible in consec-
utive time slots.

3. REINFORCEMENT LEARNING BASED
COGNITIVE RADIO

Reinforcement learning enables learning from feedback re-
ceived through interactions with an external environment.
The classic reinforcement learning algorithm is implemented
as follows. At each time t, the agent perceives its current
state st ∈ S and the set of possible actions Ast . The agent
chooses an action a ∈ Ast and receives from the environ-
ment a new state st+1 and a reward rt+1. Based on these
interactions, the reinforcement learning agent must develop
a policy π : S → A which maximizes the long-term reward
R =

P
t γrt for Markov Decision Processes (MDPs), where

0 ≤ γ ≤ 1 is a discounting factor for subsequent rewards.
One of the most successful reinforcement learning algo-

rithm is Q-learning [19]. This approach uses a simple value
iteration update process. At time t, for each state st and
each action at, the algorithm calculates an update to its
expected discounted reward, Q(st, at) as follows:

Q(st, at) ← Q(st, at) +

α[rt + γ max
a

Q(st+1, at+1) − Q(st, at)]

where rt is an immediate reward at time t, αt(s, a) is the
learning rate such that 0 ≤ αt(s, a) ≤ 1, and γ is the dis-
count factor such that 0 ≤ γ ≤ 1. Q-learning stores the
state-action values in a table.

3.1 Application to cognitive radio
In cognitive radio network, if we consider each cognitive

user to be an agent and the wireless network to be the ex-
ternal environment, cognitive radio can be formulated as a
system in which communicating agents sense their environ-
ment, learn, and adjust their transmission parameters to
maximize their communication performance. This formula-
tion fits well within the context of reinforcement learning.

Figure 3 gives an overview of how we apply reinforcement
learning to cognitive radio. Each cognitive user acts as an
agent using reinforcement learning. These agents do spec-
trum sensing and perceive their current states, i.e., spec-
trums and transmission powers. They then make spectrum
decisions and use spectrum mobility to choose actions, i.e.
switch channels or change their power value. Finally, the
agents use spectrum sharing to transmit signals. Through
interaction with the radio environment, these agents receive
transmission rewards which are used as the inputs for the
next sensing and transmission cycle.

A state in reinforcement learning is some information that
an agent can perceive within the environment. In RL-based
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Figure 3: Multi-agent reinforcement learning based
cognitive radio.

cognitive radio, the state of an agent is the current spectrum
and power value of its transmission. The state of the multi-
agent system includes the state of every agent. We therefore
define the state of the system at time t, denoted st, as

st = ( �sp, �pw)t,

where �sp is a vector of spectrums and �pw is a vector of power
values across all agents. Here spi and pwi are the spectrum
and power value of the ith agent and spi ∈ SP and pwj ∈
PW . Normally, if there are M spectrums and N power
values, we can using the index to specify these spectrums
and power values. In this way, we have SP = {1, 2, ..., m}
and PW = {1, 2, ..., n}.

An action in reinforcement learning is the behavior of an
agent at a specific time at a specific state. In RL-based
cognitive radio, an action a allows an agent to either switch
from its current spectrum to a new available spectrum in
SP , or switch from its current power value to a new available
power value in PW . Here we define action at at time t as

at = (�k)t,

where �k is a vector of actions across all agents. Here ki

is the action of the ith agent and ki ∈ {jump spectrum,
jump power}.

A reward in reinforcement learning is a measure of the
desirability of an agent’s action at a specific state within
the environment. In RL-based cognitive radio, the reward
r is closely related to the performance of the network. The
rewards for the different network conditions are as follows:

• CR-PU interference: If primary user (PU) activity oc-
curs in the spectrum shared by the CR user, and in
the slot same selected for transmission, then a high
penalty of −15 is assigned. The intuitive meaning of
this is as follows: We permit collision among the CR
users, though that lowers the link throughput. How-
ever, the concurrent use of the spectrum with a PU
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Figure 4: Block diagram of the implemented simulator tool for reinforcement learning based cognitive radio.

goes against the principle of protection of the licensed
devices, and hence, must be strictly avoided.

• Intra-CR network Collision: If a packet suffers a col-
lision with another concurrent CR user transmission,
then a penalty of −5 is imposed. Collisions among the
CR users lowers the link throughput, which must be
avoided. The comparatively low penalty to the CR
users arising from intra-network collisions is aims to
force fair sharing of the available spectrum by encour-
aging the users to choose distinct spectrum bands, if
available.

• Channel Induced Errors: The inherent unreliability in
the wireless channel results in signal variations called
as fading caused by multipath reflections (several dif-
ferent copies of the same signal arriving within short
periods of each other), relative motion between sender-
receiver pair (based on the Doppler effect), among
others. This phenomenon results in occasional bit-
flips in the received data stream, and in this work,
we use standard expressions of bit error rate derived
under a Rayleigh fading environment [15]. Moreover,
higher received signal strength reduces errors arising
out of background noise. Interestingly, certain spec-
trum bands are more robust to channel errors owing
to the lower signal attenuation with distance.

By preferring the spectrum bands with the lowest packet
bit error rate (and hence, packet error rate PER),
the CR users reduce re-transmissions and associated
network delays. The carrier to noise power ratio at

the receiver, say j, can be calculated by
P j

rx
N

, where

the noise power N is assumed as 10−10 mW. Con-
sequently, the energy per bit Eb/N0 is given by Eb

N0
=

P j
rx
N

× Bw
R

. From this, the probability of bit error P j
b at

the receiver j can be derived for QPSK modulation as

Q
“q

2 · Eb
N0

”
[13], where the channel bandwidth Bw

is 22MHz, and the bit rate R is 2Mbps considering
a channel structure similar to the one defined in the
IEEE 802.11b specification [10]. Q is the Q-function
that can be expressed in terms of the error function erf

as Q = 1
2

“
1 − erf( x√

2
)
”
. Furthermore, assuming each

packet transmitted by the sender is ψ bits in length, we
can calculate the probability of unsuccessful transmis-
sion by the packet error rate or PER = 1− (1−P j

b )ψ.

• Link Disconnection: If the received power (P j
rx) is less

than the threshold of the receiver Prth (here, assumed
as −85 dBm), then all the packets are dropped, and
we impose a steep penalty of −20. Thus, the sender
should quickly increase its choice of transmit power so
that the link can be re-established.

• Successful Transmission: If none of the above condi-
tions are observed to be true in the given transmission
slot, then packet is successfully transmitted from the
sender to receiver, and a reward of +5 is assigned.

In this way, we can apply multi-agent reinforcement learn-
ing to solve cognitive radio problem.

4. EXPERIMENTAL SIMULATION
In this section, we describe preliminary results from ap-

plying multi-agent reinforcement learning to our cognitive
radio model. The overall aim of our proposed learning based
approach is to allow the CR users (hence, agents) to decide
on an optimal choice of transmission power and spectrum
so that (i) PUs are not affected, and (ii) CR users share the
spectrum in a fair manner.

4.1 Experimental Design
A novel CR network simulator described in Section 4.1 has

been designed to investigate the effect of the proposed rein-
forcement learning technique on the network operation. As
shown in Figure 4, our implemented ns-2 model is composed
of several modifications to the physical, link and network
layers in the form of stand-alone C++ modules. The PU
Activity Block describes the activity of PUs based on the
on-off model, including their transmission range, location,
and spectrum band of use. The Channel Block contains a
channel table with the background noise, capacity, and occu-
pancy status. The Spectrum Sensing Block implements the
energy-based sensing functionalities, and if a PU is detected,
the Spectrum Management Block is notified. This, in turn
causes the device to switch to the next available channel, and
also alert the upper layers of the change of frequency. The
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Spectrum Sharing Block coordinates the distributed chan-
nel access, and calculates the interference at any given node
due to the ongoing transmissions in the network. The Cross
Layer Repository facilitates the information sharing between
the different protocol stack layers.

We have conducted a simulation study on two topologies:
a 3 × 3 grid network with a total of 18 CR users (the small
topology), and a random deployment of 2000 CR users dis-
tributed in a square area of 2000m side (the large topology).
Half of the total deployed nodes are senders, and the nearest
neighbor to each of them becomes their respective receiver.
We consider the time to be slotted, and the link layer at each
sender node attempts to transmit with a probability p = 0.2
in every slot. In the small topology, we assume 4 spectrum
bands, given by the set F = {50MHz, 500MHz, 2GHz, and
5GHz}, and 4 transmit power values. There are a total of 2
PUs. In the large topology, we assume 400 spectrum bands,
chosen as default in the range from 50MHz to 5GHz, and
20 transmit power values. There are a total of 100 PUs.
In both topologies, the permissible power values are 20m
uniformly distributed between 0.5mW to 4mW.

Each PU is randomly assigned one default channel in
which it stays with probability 0.5. It can also switch to
three other pre-chosen successively placed channels with the
decreasing probability {0.4, 0.3, 0.3}, respectively. Thus, the
PU has an underlying distribution with which it is active on
a given channel, but this is unknown to the CR user. The
transmission in the CR network occurs on multiple sets of
pre-decided node pairs, each such pair forming a link rep-
resented as {i, j}. The terms in the parenthesis denote the
directional transmission from the sender i to the receiver j.
The choice of spectrum is made by the sender node, and
is communicated to the receiver over the common control
channel or CCC. This CCC is also used to return feedback
to the sender regarding possible collisions that may be expe-
rienced by the receiver. However, data transmission occurs
exclusively in the spectrum chosen by the node pair forming
the link.

We compare the performance of our reinforcement learn-
ing based (RL-based) scheme with the other three schemes:
(i) random assignment, that selects a random combination
of spectrum and power in each round; (ii) greedy assign-
ment with history 1 (G-1), and (iii) greedy assignment with
history 30 (G-30). The G-1 algorithm stores for every pos-
sible spectrum and power combination the reward received
the last time that combination was selected (if any). The
algorithm selects the combination with the highest previous
reward with probability η and explores a randomly chosen
combination with probability (1 − η). The G-30 algorithm
maintains a repository of the reward obtained in the 30 past
slots for every combination of power and spectrum, and se-
lects the best combination in the past 30 slots. Similar to
G-1, G-30 selects the best known combination from the his-
tory with η = 0.8, and explores a randomly chosen one with
probability (1 − η) = 0.8. In our RL-based scheme, the ex-
ploration rate ε is set to 0.2, which we found experimentally
to give the best results. Action exploration stops after 25000
epoches. The initial learning rate α is set to 0.8, and it is
decreased by a factor of 0.995 after each time slot. Note
that G-1 uses the same amount of memory as the RL-based
scheme, but the G-30 uses 30 times more memory.

4.2 Results
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Figure 5: Average probability of successful trans-
mission for the small topology.
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Figure 6: Average reward of CR users for the small
topology.
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Figure 7: Average number of channel switches for
the small topology.
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We applied the four schemes, i.e. random, G-1, G-30,
RL-based, to the small and large topologies. We collect the
results over 30000 time slots, and record the average proba-
bilities of successful transmission, the average rewards of CR
users, and the average number of channel switches by CR
users. We then plot these values over time. Each experiment
is performed 5 times and we report the means and standard
deviations of the recorded values. In our experiments, all
runs were found to converge within 30,000 epochs.

Figure 5 shows the average probability of successful trans-
mission when applying the four schemes to the small topol-
ogy. The results show that the RL-based scheme transmits
successful packets with an average probability of approx-
imately 97.5%, while the G-30, G-1 and random schemes
transmit successful packets with average probabilities of ap-
proximately 88.2%, 79.4%, and 48.7%, respectively. The
results indicate that after learning, the RL-based approach
can effectively guarantee successful transmissions, and its
performance is much better than the others, including the
G-30 scheme which uses more than an order of magnitude
more memory.

Figure 6 shows the corresponding average rewards received
by CR users when applying the four schemes to the small
topology. The results show that after learning, the RL-based
scheme receives the largest positive reward of approximately
+4.3, while the G-30 gets a reward of approximately +1.7,
G-1 gets an negative average reward of approximately −0.8
and the random scheme gets a negative average reward of
approximately −7.5. The results indicate that the RL-based
approach pushes CR users to gradually achieve higher posi-
tive rewards and choose more suitable spectrum and power
values for their transmission. The results also indicate that
the reward tends to be proportional to the probability of
successful transmission.

Figures 7 shows the corresponding average number of chan-
nel switches by CR users when applying the four schemes to
solve the small topology. The results show that after learn-
ing, the RL-based scheme tends to decrease channel switch-
ing to 0, while G-30 keeps the channel switches to approxi-
mately 1.5, G-1 keeps the channel switches to approximately
2.6, and the random scheme keeps the channel switches to
approximately 6.0. The results indicate that our RL-based
approach is able to keep the channel switches very low. The
results also indicate that our approach can converge to an
optimal solution for successful transmission after learning.

We further observe in the graphs of Figures 5, Figures 6
and Figures 7 that the behavior of the RL-based scheme is
smoother and more predicatable than the behavior of the
other approaches. These results suggest that our approach
is more stable than the G-30, G-1, and random approaches.

Figures 8 shows the average probabilities of successful
transmissions when applying the RL-based, G-30, and ran-
dom schemes to the large topology. The results show that
the RL-based scheme transmits successful packets with the
average probability of approximately 78.2%, while the G-
30 and random scheme transmit successful packets with the
average probabilities of approximately 49.5% and 43.2%, re-
spectively. Note that the average probabilities of successful
transmissions increases sharply after 250000 epochs because
action exploration stops. The results indicate that our pro-
posed approach outperforms the G-30 and random approach
after learning, even when G-30 uses more memory.

Figures 9 shows the corresponding average rewards of CR
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Figure 8: Average probability of successful trans-
mission for large topology.
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Figure 9: Average reward of CR users for large
topology.
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Figure 10: Average number of channel switches for
large topology.
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users when applying the same three schemes to the large
topology. The results show that after learning, the RL-based
scheme receives the largest average reward of approximately
−10.9, while the G-30 gets an average reward of approxi-
mately −13.6 and the random scheme gets a negative av-
erage reward of approximately −14.0. The results indicate
that our RL-based approach reduces the negative rewards
to the largest extent when unsuccessful transmission must
occur in a cognitive radio network.

Figures 10 shows the corresponding average number of
channel switches of CR users when applying the three schemes
to the large topology. The results show that after learning,
the RL-based scheme tends to decrease channel switching to
0, while G-30 keeps the channel switches to approximately
906 and the random scheme keeps the channel switches to
approximately 991. The results indicate that our proposed
approach can keep the channel switches very low and con-
verge to an optimal solution.

In the large topology, our reinforcement learning tech-
nique shows two key characteristics: (1) the learning curve
initially underperforms in both the probability of successful
transmission and the reward earned by the CR user, respec-
tively , and (2) it outperforms the competing schemes to-
wards the later end of the simulation duration, after about
25, 000 time slots. In both these cases, the learning tech-
nique assumes a flat slope that indicates fewer fluctuations
and a convergence-like behavior. Moreover, the number of
channel switches is significantly lower than the others, which
directly results in higher network throughput. The RL-
based scheme, as well as the competing schemes, are subject
to the complex network behavior and exhibit different sub-
optimal peaks before converging on a static value. We note
that the authors are not aware of simulation studies of such
a large-scale network being previously performed.

5. FUNCTION APPROXIMATION FOR RL-
BASED COGNITIVE RADIO

A key limitation on the effectiveness of reinforcement learn-
ing is the size of the table needed to store the state-action
values. The requirement that an estimated value be stored
for every state limits the size and complexity of the learn-
ing problems that can be solved. Problems with large state
spaces, such as large-scale cognitive radio problems, are typ-
ically difficult to solve.

Function approximation [5], which stores an approxima-
tion of the entire table, is one way to solve this problem.
Many function approximation techniques exist, including
coarse coding [9] and tile coding [4] (also known as CMAC
[19]), and there are guarantees on their effectiveness in some
cases. A limitation of these techniques is that they cannot
handle continuous state-action spaces with high dimension-
ality [17]. Sparse Distributed Memories (SDM) [11] can also
be used to reduce the amount of memory needed to store the
state-action value table. This approach applied to reinforce-
ment learning, also called Kanerva Coding [17], represents a
function approximation technique that is particularly well-
suited to problem domains with high dimensionality.

In order to implement Kanerva Coding to our reinforce-
ment learning based approach, a collection of k prototype
state (prototypes) �p = ( �sp, �pw) is randomly selected from
the state space of every CR user. A state s and a prototype
p are said to be adjacent if their Euclidean distance is no
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Figure 11: Average probability of successful trans-
mission for large topology.

more than a threshold. Normally, we set the threshold as the
ratio of the number of states over the number of prototypes.
A state is represented as a collection of binary features, each
of which equals 1 if and only if the corresponding prototype
is adjacent. A value θ(i) is maintained for the ith feature,
and an approximation of the value of a state is then the
sum of the θ values of the adjacent prototypes. In this way,
Kanerva Coding can greatly reduce the size of the value ta-
ble that needs to be stored in the RL-based approach. The
computational complexity of the approach depends entirely
on the number of prototypes, which is not a function of the
number of the dimensions of the state space.

5.1 Results
We evaluate our reinforcement learning-based approach

with Kanerva-based function approximation (RL-K-based)
by applying it to the large topology. We compare the perfor-
mance of the RL-K-based scheme with the RL-based scheme.
In the RL-K-based approach, the learning parameters are
same as the RL-based approach. The number of prototypes
varies over the following values: 2000, 4000, 6000. Note that
the number of states in the large topology is 8000, that is,
400 (channels) × 20 (power values).

Figures 11 shows the average probability of successful trans-
mission when applying the RL-K-based scheme with vary-
ing numbers of prototypes to the large topology. The re-
sults show that after learning, the RL-K-based scheme with
2000, 4000 or 6000 prototypes transmits successful packets
with an average probability of approximately 41.5%, 65.2%,
and 70.5%, respectively. The results indicate that although
the performance of the RL-K-based scheme is worse than
the RL-based scheme, the RL-K-based scheme can use less
memory. For example, the RL-K-based scheme uses 2/3 of
memory of the pure RL scheme with a loss of only 7.9%
of successful transmissions with 6000 prototypes, and uses
1/2 size of memory with the loss of only 13.0% of success-
ful transmissions with 4000 prototypes. The results also
show that if the number of prototypes is too small, the
performance is similar to randomly choosing channels and
power values. In our future work, we will focus on using
prototype optimization techniques to improve the efficiency
of Kanerva-based function approximation for reinforcement
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learning based cognitive radio.

6. CONCLUSIONS
Cognitive radio is a new paradigm that attempts to op-

portunistically transmit in licensed frequencies, without af-
fecting the existing primary users of these bands. To realize
this capability, such a radio must predict specific interferer
transmission patterns and adaptively change its operational
parameters, such as transmit power and spectrum. These
tasks, collectively referred to as spectrum management, are
difficult to achieve in a dynamic distributed environment, in
which CR users may only make local decisions, and react to
changes in the environment. In this paper, we described a
novel spectrum management approach based on multi-agent
reinforcement learning for CR ad hoc networks with decen-
tralized control. Our approach uses value functions to mea-
sure the desirability of choosing different transmission pa-
rameters, and enables efficient assignment of spectrum and
transmit powers by maximizing long-term rewards.

We evaluated our approach by applying it to several real-
world scenarios. By comparing the communication perfor-
mance with random and greedy spectrum assignment, we
showed that our reinforcement learning-based approach out-
performs the other approaches. We also employed Kanerva-
based function approximation to improve our approach’s
ability to handle large cognitive radio networks. By eval-
uating its effect on communication performance, we showed
that function approximation can effectively reduce the mem-
ory used for large networks with little loss of performance.
We therefore conclude that our reinforcement learning based
spectrum management can significantly reduce interference
to licensed users, while maintaining a high probability of suc-
cessful transmissions in a cognitive radio ad hoc network.
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